
πWelcome to GlexAI
The Future of Decentralized Computing
Cutting-Edge Performance and Cost Efficiency
Core Functionalities
// Some code
class DistributedMLSystem:
def __init__(self):
# Initialize object-store and distributed network
self.model_store = SharedObjectStore()
self.network = DistributedNetwork()
def batch_inference(self, data_batches):
"""Perform inference on incoming data batches using a shared object-store."""
for batch in data_batches:
results = self.network.perform_inference(batch, self.model_store)
return results
def parallel_training(self, training_data):
"""Overcome CPU limitations with parallel training across multiple devices."""
devices = get_available_devices()
parallel_jobs = [self._train_on_device(data, device) for device in devices]
return aggregate_results(parallel_jobs)
def hyperparameter_tuning(self, parameters):
"""Conduct hyperparameter tuning experiments in parallel."""
tuning_jobs = [self._tune_hyperparameters(param) for param in parameters]
return optimize_results(tuning_jobs)
def reinforcement_learning(self, env):
"""Utilize reinforcement learning framework with APIs."""
rl_framework = ReinforcementLearningFramework()
results = rl_framework.train(env)
return results
# Mocked components for demonstration
class SharedObjectStore: pass
class DistributedNetwork:
def perform_inference(self, batch, model_store): pass
class ReinforcementLearningFramework:
def train(self, env): pass
def get_available_devices(self): return ['GPU0', 'GPU1']
def _train_on_device(self, data, device): pass
def aggregate_results(self, jobs): pass
def _tune_hyperparameters(self, param): pass
def optimize_results(self, jobs): passLast updated